

MONITORING OF EMISSIONS FROM THE RANHEAT BOILER & WET SPRAYBOOTH PROCESSES

Prepared for Alan Nuttall Ltd

Installation: Dudley

Date of Monitoring Visit: 8-9 April, 2015

REC Report EM-02818p1r0

178

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of REC Ltd
Sampling identified as UKAS accredited was conducted in accordance with REC Ltd accredited Monitoring Methods.
Analyses identified as UKAS accredited were conducted by REC or approved sub-contractors in accordance with their SOPs

Prepared for:

Alan Nuttall Ltd

National Works Hall Street Dudley DY2 7DQ

Prepared by:

REC Ltd

Unit 19 Bordesley Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0121 326 7007 Fax: 0121 328 1689 E-mail: sales@recltd.co.uk Web: www.recltd.co.uk

Issued: 12 May, 2015

MEdwaros

Prepared by:

Michelle Edwards, Team Leader MM05 659, MCERTS Level 2, TE1-4

D. L. Myex

Reviewed by:

Derek Myers, Operations Manager MM02 115, MCERTS Level 2 TE1-4

C	CONTENTS Pag	je No.
P	ART 1: EXECUTIVE SUMMARY	4
	Objectives of Monitoring	4
	Monitoring Results	5
	Operating Information	6
	Monitoring Deviations	7
Ρ	ART 2 SUPPORTING INFORMATION	8
A	PPENDIX 1	8
	Sampling Personnel	8
	Method Details	8
	Monitoring Equipment	9
F	URTHER APPENDICES	
2	Stack Diagrams & Description (2 x Additional Pages)	
3	Flow Data (5 x Additional Pages)	
4	Preliminary Gas Measurements & Water Vapour Results (2 x Additional Pages	s)
5	Gas Analyser Calibration Measurements (3 x Additional Pages)	
6	Gas Analyser Results (3 x Additional Page)	
7	Laboratory Certificates of Analysis (5 x Additional Pages)	
8	Manual Monitoring Results (19 x Additional Pages)	
9	Uncertainty Calculations (7 x Additional Pages)	

PART 1: EXECUTIVE SUMMARY

Objectives of Monitoring

Resource & Environmental Consultants (REC) Ltd was commissioned by Alan Nuttall Ltd to monitor emissions of pollutants from released from various process stacks at their site in Dudley.

The operations at Alan Nuttall Ltd are authorised under a Part B permit issued by the Local Authority under the Environmental Permitting Regulations, 2010. The site must demonstrate compliance with the emission limits stipulated in the site permit ref. PB/33.

Monitoring has been undertaken for the following parameters:-

- · · · · · · · ·	Emission Poin	t Identification
Emission Parameter	Wet Spray Booth	Ranheat Boiler
Total Particulate Matter	✓	✓
Hydrogen Chloride (as HCl)	-	✓
Formaldehyde	-	✓
Oxygen (O ₂)	-	✓
Carbon Monoxide (CO)	-	✓
Total VOCs (as C)	-	✓
Hydrogen Cyanide	-	✓

Monitoring was undertaken during normal process operations.

Monitoring Results

Emission Point Reference	Parameter	Emission Limit	Monitoring Result	Uncertainty	Units	Reference conditions	Date of Sampling	Start & End Times	Reference Method	Accreditation Status ⁽¹⁾	Operating Status
Wet Spray Booth	Particulates	50	9.8	±1.4	mg/m ³	STP, Wet	08/04/15	11:14- 11:54	BS EN 13284	В	Normal
	Particulates	200	89.9	±3.8	mg/m ³	STP, Wet	09/04/15	12:35 – 13:05	BS EN 13284	В	Normal
	HCI	100	25.4	±3.1	mg/m ³	STP, Wet	09/04/15	12:35 – 13:05	BS EN 1911	В	Normal
	Formaldehyde	5	<0.07	±<0.01	mg/m ³	STP, Wet	09/04/15	13:46 – 14:16	US EPA M316A	В	Normal
Ranheat Boiler	HCN	5	<0.1	N/A	mg/m ³	STP, Wet	09/04/15	13:31- 14:11	US EPA CTM33	E	Normal
	СО	250	54.4	±2.2	mg/m ³	STP, Wet	09/04/15	12:35 – 13:35	BS EN 15058	А	Normal
	O ₂	None Set	13.5	±0.4	%vol.	STP	09/04/15	12:35 – 13:35	BS EN 14789	А	Normal
	Total VOCs (as C)	20	12.3	±1.7	mg/m ³	STP, Wet	09/04/15	12:35 – 13:35	BS EN 12619	А	Normal

NOTE (1): UKAS/MCERTS status:- (A) REC Ltd accredited for sampling and analysis. (B) REC Ltd accredited for sampling only, UKAS accredited analysis conducted by SAL or RPS. (E) REC Ltd not accredited for sampling, sub-contracted analysis conducted by SAL not UKAS accredited.

Operating Information

Emission	Date	Process	Process	Fuel	Feedstock	Load	Lood	Lood	Abatement	Compariso		tor CEMS and ng Results	Periodic
Point Reference	Date	Туре	Duration	Туре	reedstock		Plant	Substance	CEMS Results	Monitoring Results	Units		
Wet Spray Booth	08/04/15	Spray Booth	Batch	Electricity	Furniture Fittings	Normal	None	N/A	N/A	N/A	N/A		
Ranheat Boiler	09/04/15	Wood Burning Boiler	Continuous	Natural Gas	Laminated Scrap Wood	Normal	None	N/A	N/A	N/A	N/A		

Monitoring Deviations

Emission Point Reference	Substance Deviations	Monitoring Deviations	Other Relevant Issues
Wet Spray Booth	None	None	The flow and temp variations were within requirements of EA TGN M1 Single four inch BSP socket was installed on the stack. EA TGN M1 requires 2 x 5 inch BSP sockets to be fitted at least 5 x hydraulic diameters from any flow disturbance both upstream and downstream of the sampling plane.
Ranheat Boiler	None	<95% of HCl detected in Impingers 1 & 2, probably due to very low concentration of target pollutant.	The flow and temp variations were within requirements of EA TGN M1. Only four inch BSP sockets were installed on the stack. EA TGN M1 requires 5 inch BSP sockets to be fitted at least 5 x hydraulic diameters from any flow disturbance both upstream and downstream of the sampling plane.

PART 2 SUPPORTING INFORMATION

APPENDIX 1

Sampling Personnel

Monitoring was conducted by the following REC Ltd permanent staff:-

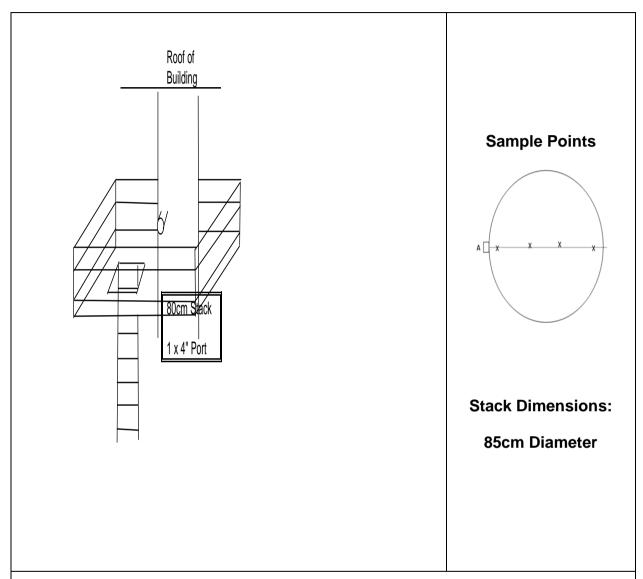
David Burns - Team Leader, MM05 579., MCERTS Level 2, TE1-4
 Michelle Edwards - Assistant, MM05 659, MCERTS Level 2, TE1-4

Method Details

The following table shows the reference methods used for the emissions monitoring survey:

Species	UKAS/ MCERTS Status	Method	Uncertainty ±%	Limit of Detection
Moisture	А	In house method MM0010 based on BS EN 14790	20	0.1%vol
Particulates	В	In house method MM0004 based on BS EN 13284	10	1 mg/m ³
Hydrogen Chloride	В	In house method MM0006 based on BS EN 1911	20	0.1 mg/m ³
Formaldehyde	В	In house method MM0015 based on US EPA M316A	20	0.1 mg/m ³
Hydrogen Cyanide	Е	Based on US EPA CTM33	30	0.1 mg/m ³
Carbon Monoxide	А	In house method MM0002 based on BS EN 15058	10	1 mg/m ³
Oxygen	А	In house method MM0002 based on BS EN 14789	10	0.1%vol
Total VOCs (as C)	А	In house method MM0002 based on BS EN 12619	10	1 mg/m ³
Flows	Α	In house method TPM01A based on EA MID BS EN 16911	10	5Pa

NOTE (1): UKAS/MCERTS status:- (A) REC Ltd accredited for sampling and analysis. (B) REC Ltd accredited for sampling only, UKAS accredited analysis conducted by SAL or RPS. (E) REC Ltd not accredited for sampling, sub-contracted analysis conducted by SAL not UKAS accredited.


Monitoring Equipment

All monitoring equipment used at Alan Nuttall Ltd was calibrated before use either externally or in accordance with in house calibration procedures. The equipment used for the testing for each stack identified by its unique AQ No. is shown below.

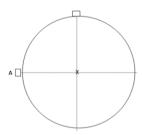
Equipment	Identification			
Nozzle(s)	AQ	153		
Probes(s)	No.	14		
Pitot(s)	AQ	104		
Timer	AQ	308		
Glassware Set		Birmingham Set 1 & Mini Impingers		
Thermocouple(s)	AQ	148, 301		
Temperature Indicator	AQ	126,163		
Control Console	AQ	126		
Manometer	AQ	126		
Tape Measure	AQ	278		
Balance	AQ	090		
FID	AQ	270		
Horiba	AQ	268		
Cylinders		VC8179253 - Nitrogen VC10044 - Zero Air VCSMG5960 – O_2 & CO VCDY0207 – C_3 H ₈		
DGM	AQ	199		
Heated Line	AQ	315		
Heated Line Controller	AQ	316b		
Barometer	AQ	344		

APPENDIX 2 RANHEAT BOILER & WET SPRAY BOOTH

STACK DIAGRAMS & DESCRIPTION

Sample Point Description

A single 4" BSP sampling port was installed on a horizontal plane. The sampling points provided were less than 4 x hydraulic diameters from any flow disturbance both upstream and downstream from the sampling plane.


Due to the absence of a second sampling port, sampling could only be carried out across one sampling plane. The number of sampling points along this plane, were however doubled.

Access was via small temporary scaffolding.

Both the port size and sample planes do not fully meet the requirements stated in Environment Agency Technical Guidance Note M1.

Sample Points

Stack Dimensions: 22cm Diameter

Sample Point Description

On the Wood Burning Boiler stack 2 x 4" BSP sampling ports were installed at 90° to each other on a horizontal plane. The sampling points provided were less than 4 x hydraulic diameters from any flow disturbances both upstream and downstream from the sampling plane.

Due to access restrictions, only a single sampling plane could be utilised, However this was deemed suitable for the size of the ducting.

Access was via a temporary platform.

Both the port size and sample plane do not fully comply with the positional requirements of Environment Agency Technical Guidance Note M1 (EA TGN M1).

APPENDIX 3 RANHEAT BOILER & WET SPRAY BOOTH

FLOW DATA

APPENDIX 3.1

FLOW DATA

Stack Ref.	Stack Temp	Av Pitot ΔP	Duct Diam	X-Sect. Area	Velocity (actual)	Volum (m³/	
	(°C)	(Pa)	(cm)	(m²)	(m/s)	(actual)	(@ ntp)
Wet Spray Booth	14	20	80	0.503	4.4	7,894	7,465
Ranheat Boiler	130	69	22	0.038	10.5	1,441	974

PRELIMINARY TRAVERSE DATA RECORDING SHEET (CIRCULAR DUCTS)

Site Reference	ALA 6M-1802818				
Site Name	ALLU NUTTALS				
Stack Reference	WOOD BURNER BOILER				
Date	09/04/15				
Time	08:58				
Staff	AWIHB				

0.22.	m mmH ₂ 0	Pa
- 27	mmH ₂ 0	Per
		. 0
101.3	mbar	
08404.		
	%	
73	%	
-	73	8404.

Stagnation Pressure Check (S Type Pitot) (Difference between Leg A and B must be < 10Pa or < 1mmH₂O)

Leg A	27	Pa
Leg B	25	Pa

ΔP units	Pa	or
PRODUCTION OF THE PARTY OF THE		

mmH₂O

elocity Tr	averse										
Traverse	Traverse %	Depth	ΔΡ,1	ΔΡ,2	ΔΡ,3	ΔP,ave	T,1	T,2	T,3	T,ave	Angle
Point	Line A	cm					°C	°C	°C	°C	0
1	2.1	0.5	1				139	1	/	1	1
2	6.7	15					13/6	1			
3	11.8	2.6.			/		130				
4	17.7	3.9	/	1	1		1/30	1			1
5	25	5.5	64	65	67	65.3	130	130	130	130	215°
6	35.6	7.8	66	68	68	62-3	130	130	130	130	Liso
7	64.4	14.2	70	72	71	71-0	130	130	130	130	LIS"
8	75	16.5	72	74	75	737	130	131	131.	131	<15°
9	82.3	18.1	/	1	1		1		1		1
10	88.2	19.4		. /							
11	93.3	20.5									/
12	97.9	21.5	/	/	/			/	1		
Point	Line B	Depth	ΔΡ,1	ΔΡ,2	ΔΡ,3	ΔP,ave	T,1	T,2	T,3	T,ave	Angle
1	2.1										
2	6.7		1					1			
3	11.8						/	1. ne	7		
4	17.7										
5	25										
6	35.6										
7	64.4								1		
8	75										
9	82.3										
10	88.2										
11	93.3	/									
12	97.9										

An electronic manometer was used to provide a direct reading of average differential pressure over at least 1 minute

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

Angel of gas flow less than 15° with regard to duct axis	
No local negative flow	
Minimum pitot greater than 5Pa	
Minimum local gas velocity	10.3
Maximum local gas velocity	10:0
Ratio of highest to lowest local gas velocity	1.06.

Pitot	104
Manometer	126 PIO
Temperature ind.	148 11/26
Thermocouple	148
Barometer	344
Timer	308

Issue No.: 2.0

Issue Date: 06/01/15 Issued By: J Hawkins Ţ,

BS EN 13284-1:2002 Sampling Points

Range of Sampling plain areas (m²)	Range of Duct Diameters (m)	Minimum Number of Sampling lines (diameters)	Minimum Number of Sampling Points per plane
<0.1	0.35		1a
0.1 to 1.0	0.35 to 1.1	2	4
1.1 to 2.0	1.1 to 1.6	2	8
>2.0	>1.6	2	At least 12 and 4 per m ²⁰

Using only one sampling point may give rise to errors greater than those specified in the method and the standard

For Large ducts, a number of 20 sampling points is generally sufficient.

Tangential Rule Sampling Points

Sample	1	% Along	Traverse	
Point		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Number	n=2	n=4	n=6	n=8
1	14.6	6.7	4.4	3.3
2	85.4	25	14.6	10.5
3	2948877 N 39N	75	29.6	19.4
4		93.3	70.4	32,3
5	<u> </u>		85.4	67.7
6			95.6	80.6
<u>7</u> 8	fan satistis in start i	in a report of the second of the		89.5
	<u> </u>	% Along	Trougnes	96.7
Sample Point		% Along	ıraverse	
Number	n=10	n=12	n=14	n=16
1	2.6	2.1	1.8	1.6
2	8.2	6.7	5.7	4.9
3	14.6	11.8	9.9	8.5
4	22.6	17.7	14.6	12.5
5	34.2	25	20.1	16.9
6	65.8	35.6	26.9	22
7	77.4	64.4	36.6	28.3
8	85.4	75	63.4	37.5
9	91.8	82.3	73.1	62.5
10	97.4	88.2	79.9	71.7
. 11		93.3	85.4	78
12	<u></u>	97.9	90.1	83.1
13	<u></u>		94.3	87.5
14		إكب يتدانين المستنسم	98.2	91.5
15 16				95.1
	Several Services	124 Berg - 22-21 - 25-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 12-1 - 1		98.4
Sample Point		% Along `	ITAVEISE	
Number	n=18	n=20	n=22	n=24
1	1.4	1.3		
2			I 11 II	11
	4.4		1.1	1.1
. 3	4.4 7.5	3.9	3.5	3.2
· 3	4.4 7.5 10.9			
- 3 - 4 - 5	7.5 10.9 14.6	3.9 6.7 9.7 12.9	3.5 6	3.2 5.5
3 4 5 6	7.5 10.9 14.6 18.8	3.9 6.7 9.7 12.9 16.5	3.5 6 8.7	3.2 5.5 7.9
3 4 5 6 7	7.5 10.9 14.6 18.8 23.6	3.9 6.7 9.7 12.9 16.5 20.4	3.5 6 8.7 11.6 14.6	3.2 5.5 7.9 10.5
3 4 5 6 7 8	7.5 10.9 14.6 18.8 23.6 29.6	3.9 6.7 9.7 12.9 16.5 20.4 25	3.5 6 8.7 11.6 14.6 18 21.8	3.2 5.5 7.9 10.5 13.2 16.1 19.4
3 4 5 6 7 8 9	7.5 10.9 14.6 18.8 23.6 29.6 38.2	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6	3.5 6 8.7 11.6 14.6 18 21.8 26.2	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23
3 4 5 6 7 8 9	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2
3 4 5 6 7 8 9 10	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3
3 4 5 6 7 8 9 10 11	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8
3 4 5 6 7 8 9 10 11 12	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2
3 4 5 6 7 8 9 10 11 12 13	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7
3 4 5 6 7 8 9 10 11 12 13 14	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8
3 4 5 6 7 8 9 10 11 12 13 14 15	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77
3 4 5 6 7 8 9 10 11 12 13 14 15 16	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3 94	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5 92.1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5

nmental Monitoring TPM/01A Worksheet

PRELIMINARY TRAVERSE DATA RECORDING SHEET (CIRCULAR DUCTS)

Site Reference	6M-1002818
Site Name	ALAN NUTTALS.
Stack Reference	SPRAY BOOTH
Date	08 loulis
Time	10:42
Staff	AWIAB

Stack Diameter	0.80	m
Static pressure	0	mmH ₂ 0
Barometric pressure	100.7	mbar
Pitot Cp	0.8404	
Oxygen	_	%
Moisture		%

Stagnation Pressure Check (S Type Pitot) (Difference between Leg A and B must be < 10Pa or < 1mmH₂O)

Leg A	7	Pa			
Leg B	5	Pa	ΔP units	Pa	

mp1H ₂ O

Velocity Traverse

velocity ir	MINISTRALIA		I POSSION PROPERTY	I STATE OF THE PARTY OF		I SECTION AND ADDRESS OF THE PARTY OF THE PA	I had a second second second	PRINTERS CONTRACTOR			
Traverse	Traverse %	Depth	ΔΡ,1	ΔΡ,2	ΔΡ,3	ΔP,ave	T,1	T,2	T,3	T,ave	Angle
Point	Line A	cm	11/4				°C	°C	°C	°C	0
1	2.1	5-0-	HB \$55	55	57	55.7	Mr	14	14	14	0
2	6.7	8-4	35	37	36	36.0	Ne	14	14	14	0
3	11.8	120	33	31	32	32	14	14	14	14	0
4	17.7	21-6	27	29	30	28.7	14	14	14	14	0
5	25	28-5	20	22	22.	21-3	14	14	14	14	0
6	35.6	85.2	-12	13	13	12-7	14	14	14	14	0
7	64.4	41-9	11	14	13	12.7	14	14	14	14	0
8	75	68-6	8	9	10	9.0	14	14	14	14	0
9	82.3	95.3	5	6	8	63	14	14	14	14	0
10	88.2	61.96	6	7	7	6.7	14	14	14	14	0
11	93.3	68.6	5	7	6.	6.0	14	14	14	14	Ø
12	97.9	75.0	7	8	8	791	14	14	14	14	0.
Point	Line B	Depth	ΔΡ,1	ΔΡ,2	ΔΡ,3	ΔP,ave	T,1	T,2	T,3	T,ave	Angle
1	2.1						1				
2	6.7						line				
3	11.8				/						
4	17.7				/						
5	25			/							
6	35.6			/							
7	64.4										
8	75										
9	82.3	/									
10	88.2										
11	93.3										1
12	97.9										

An electronic manometer was used to provide a direct reading of average differential pressure over at least 1 minute

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

Angel of gas flow less than 15° with regard to duct axis	/
No local negative flow	/
Minimum pitot greater than 5Pa	
Minimum local gas velocity	2.6
Maximum local gas velocity	7.4
Ratio of highest to lowest local gas velocity	3:05

Pitot	104
Manometer	PT 03
Temperature ind.	126
Thermocouple	145
Barometer	344
Timer	704

Issue No.: 2.0

Issue Date: 06/01/15 Issued By: J Hawkins

BS EN 13284-1:2002 Sampling Points

Range of Sampling plain areas (m²)	Range of Duct Diameters (m)	Minimum Number of Sampling lines (diameters)	Minimum Number of Sampling Points per plane
<0.1	0.35		1a
0.1 to 1.0	0.35 to 1.1	2	4
1.1 to 2.0	1.1 to 1.6	2	8
>2.0	>1.6	2	At least 12 and 4 per m ²⁶

Using only one sampling point may give rise to errors greater than those specified in the method and the standard

For Large ducts, a number of 20 sampling points is generally sufficient.

Tangential Rule Sampling Points

Sample		% Along	Traverse	
Point Number	n=2	n=4	1 C	n=0
1 1	14.6		n=6	n=8
2	85.4	6.7 25	4.4	3.3
3	55.4	75	14.6 29.6	10.5
4		93.3	70.4	19.4
- 5		93.3		32.3
6		oranical contractions and the second sections and the second sections are second secon	85.4 95.6	67.7
7	77:17 = 7 1 1 4 4 4			80.6
- 8	and the second second	The second second second		89.5 96.7
Sample		% Along	Traverse	00.1
Point				
Number	n=10	n=12	n=14	n=16
1	2.6	2.1	1.8	1.6
2	8.2	6.7	5.7	4.9
3	14.6	11.8	9.9	8.5
4	22.6	17.7	14.6	12.5
5	34.2	25	20.1	16.9
6	65.8	35.6	26.9	22
7	77.4	64.4	36.6	28.3
- 8	85.4	75	63.4	37.5
9	91.8	82.3	73.1	62.5
10	97.4	88.2	79.9	71.7
11		93.3	85.4	78
12		97.9	90.1	83.1
13	<u></u>		94.3	87.5
14			98.2	91.5
15				95.1
16				98.4
Sample Point		% Along	Traverse	
Number	n=18	n=20	n=22	n=24
1	1.4	1.3		
2		1.0	1.1	1.1
	4.4		(1.1 3.2
3		3.9 6.7	3.5 6	3.2
3 4	4.4	3.9 6.7	3.5 6	3.2 5.5
	4.4 7.5	3.9	3.5	3.2 5.5 7.9
4	4.4 7.5 10.9	3.9 6.7 9.7	3.5 6 8.7 11.6	3.2 5.5 7.9 10.5
4 5	4.4 7.5 10.9 14.6	3.9 6.7 9.7 12.9	3.5 6 8.7	3.2 5.5 7.9 10.5 13.2
4 5 6 7 8	4.4 7.5 10.9 14.6 18.8 23.6 29.6	3.9 6.7 9.7 12.9 16.5	3.5 6 8.7 11.6 14.6	3.2 5.5 7.9 10.5
4 5 6 7 8 9	4.4 7.5 10.9 14.6 18.8 23.6	3.9 6.7 9.7 12.9 16.5 20.4	3.5 6 8.7 11.6 14.6	3.2 5.5 7.9 10.5 13.2 16.1
4 5 6 7 8 9	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8	3.9 6.7 9.7 12.9 16.5 20.4 25	3.5 6 8.7 11.6 14.6 18 21.8	3.2 5.5 7.9 10.5 13.2 16.1 19.4
4 5 6 7 8 9 10	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6	3.5 6 8.7 11.6 14.6 18 21.8 26.2	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23
4 5 6 7 8 9	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2
4 5 6 7 8 9 10 11 12 13	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3
4 5 6 7 8 9 10 11	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2
4 5 6 7 8 9 10 11 12 13	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7
4 5 6 7 8 9 10 11 12 13 14	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8
4 5 6 7 8 9 10 11 12 13 14 15	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77
4 5 6 7 8 9 10 11 12 13 14 15	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6
4 5 6 7 8 9 10 11 12 13 14 15 16	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9
4 5 6 7 8 9 10 11 12 13 14 15 16 17	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 82 85.4 88.4 91.3	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3 94	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3 94	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5 92.1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	4.4 7.5 10.9 14.6 18.8 23.6 29.6 38.2 61.8 70.4 76.4 81.2 85.4 89.1 92.5 95.6 98.6	3.9 6.7 9.7 12.9 16.5 20.4 25 30.6 38.8 61.2 69.4 75 79.6 83.5 87.1 90.3 93.3 96.1 98.7	3.5 6 8.7 11.6 14.6 18 21.8 26.2 31.5 39.3 60.7 68.5 73.8 78.2 82 85.4 88.4 91.3 94	3.2 5.5 7.9 10.5 13.2 16.1 19.4 23 27.2 32.3 39.8 60.2 67.7 72.8 77 80.6 83.9 86.8 89.5

APPENDIX 4 RANHEAT BOILER & WET SPRAY BOOTH

PRELIMINARY GAS
MEASUREMENTS & WATER
VAPOUR RESULTS

APPENDIX 4.1

PRELIMINARY MOISTURE RESULTS

Sampling Data	Ranheat Boiler	Wet Spray Booth
	Dollei	Bootii
Dun Time (min)	40	40
Run Time (min)	40	40
Total mass H₂O collected (g)	27.6	7.6
Pitot tube constant, Cp	0.85	0.85
Dry gas meter (DGM) volume (m³)	0.766	1.059
Temperature DGM (°C)	17	22
Temperature stack (°C)	143	31
Mean pitot tube pressure drop, delta P (mm H₂O)	8.5	2.4
Orifice meter pressure drop, delta H (mm H₂O)	34.3	54.6
Barometric Pressure (kPa)	98.9	99.9
X-sectional area of stack (m²)	0.038	0.503
Nozzle size (mm)	7.01	10.09
Flow Data		
Velocity, actual (m/s)	12.2	5.5
Velocity, ntp (m/s)	7.9	4.9
Vol. Flow, actual (m³/hr)	1,664	9,871
Vol. Flow, ntp (m³/hr)	1,078	8,803
Volume sampled, ntp, dry gas (m³)	0.691	0.963
Volume sampled, ntp, wet gas (m³)	0.726	0.973
Emission Data		
H₂O (% vol)	4.7	1.0

APPENDIX 4.2 PRELIMINARY GAS MEASUREMENT RESULTS

	H ₂ O	O ₂	С	0	Total	VOCs
Stack Ref	(%vol)	(%vol)	ppm	mg/m³	ppm	mg/m³ (as C)
Ranheat Boiler	4.7	16.5	93.1	111.0	2.9	4.6
Uncertainty (±)	0.2	0.4		13.8		1.7

APPENDIX 5

RANHEAT BOILER

GAS ANALYSER CALIBRATION MEASUREMENTS

GAS SAMPLING WORKBOOK

GAS CALIBRATION	CYLINDE	RS USED		Job No: 028 18
Cylinder No	Contents	Concentration	Uncertainty	Client Site: Nuttab
VC8177253	Nz	9999Y-	N/A-	Date: 09/4/15 Sampling Team: AW/HB
VCSMG5960	(0)	156.4 ppm	1.0081	Sampling Team: AW H®
VCSMG S960	02	12.037.	1.0 7	The state of the s
VC10044	Zero	0	inoph	
VCDYOZOT	C3H8	9. Appn	21.	
				4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

GAS REGULATOR	R CHECKLIST	
H ₂ /He	AQ	
Acid Gas	AQ	
Other Gas	AQ	RRG38 RRG83
Other:	AQ	33

Task	1	х	Comments
Regulator has AQ No	~		
Check Gauge Covers and Condition	V		
Suitable presure range for work in hand	V		
Inlet in good condition	V		
Outlet in good condition	V		
Leak check head on cylinder	V		
Gauge reads zero OK	V		
Gauge reads press OK	V	3	
Pass/Fail	P		
Checked by	A	NAME	
Date .		9/4/15	

INSTRUMENT INFORMATION

Site			Alon	Nuttalo		
Job Number			07	2818		
Date			9/4/	LS		
Equipment Details:-	AQ:	NO _x	СО	O ₂	SO ₂	CO ₂
Horiba	268	-	-	-	-	-
Range	-	_	0-200	0-25	4 Magazan	
Repeatability at Zero	-	0.43	245046	0.06	0.06	
Repeatability at Span	-		Q. ZZ	- 084		
	AQ:	VOC		Comr	nents	
FID	270	-				
Range	-	0-10				
Repeatability at Zero	-	0.1	^			
Repeatability at Span	-	-D-07A	0.05			
	AQ:		36	Comments		
Heated Line	315					
Heated Line Controller	316					
Heated Line						
Heated Line Controller						
Data Logger	Jumo Log	ger				
Data Logger						1

PRE-CALIBRATION CHECKS

		THE REAL PROPERTY AND PERSONS ASSESSED.					
Parameter: Instrument:	WOCS WOCS	SO ₂	00	O ₂ (dry)		Job No: Client Site: Date:	02818 A. Nuttalo 9/4/15
c Pr	ssure (kPa): (C	1.3				Data Saved as	
Ambient Temperature °C: 23-3 Gas Conditioning Unit <4°C	ature °C: 23-	S Yes / No	21			FID: Horiba:	, 3620
NOTE: Instrument Span/Zero = back of instrument, System S	nt Span/Zero =	back of instrui	nent, System S	pan/Zero = en	d of line to allow	pan/Zero = end of line to allow leakage to be assessed	passe
Pre Sampling Cal	Span/Zero Gas Ref	Gas Conc.	Time	T ₉₀ Value	Response Time T ₉₀	Instrument Reading	Comment - (eg. zero deviation <2 X the repeatability at zero, system span <2% and zero <2% span gas value)
Instrument Zero	N2	0	8.15			0	Set to ser ser
Instrument Span	CO	4.951	8.21			7.951	Set to S.G.
Instrument Zero Re-Check	N2	9	8.27			9	4 2x representability
System Zero	Z	0	4:00			0	2 2 x 5GV
System Span	0	1:951	4.05	170.8	27	156.3	L 27. SG
Instrument Zero	Z	0	21.8			0	Set to 200
Instrument Span	02	12.03	8.21			12:03	Set to SGU
Instrument Zero Re-Check	NZ	0	\$:2 +			0	c 2% repeated this
System Zero	Z	0	4.00			10.01	2 27. 560
System Span	00	12.03	4.05	13.2	25	12.04	7 57. 500

REC Ltd SOP005 Gas Sampling Workbookv6

3
V
4.4
O
Ш
T
e a
O
-
5
Ě
3
n
m
ш
\Box
a
-
Q
nó.
щ
œ
0

Parameter:	NOX	SO ₂	93	O ₂ (dry)		1	8/82
Instrument: herr		0			9	Cilent Site: Date:	\$1/4/12 \$1/4/12
Atmospheric Pressure (kPa): Ambient Temperature °C:	ature °C:	U				Data Saved as FID:	s FID: See Page 3
Gas Conditioning Unit <4°C NOTE: Instrument Span/Zer	g Unit <4°C nt Span/Zero = I	Yes / No back of instrum	nent, System S	pan/Zero = enc	d of line to allow	Gas Conditioning Unit <4°C (Yes) / No Horiba: See Pa NOTE: Instrument Span/Zero = back of instrument, System Span/Zero = end of line to allow leakage to be assessed	Horiba: See Page 3 o be assessed
Pre Sampling Cal	Span/Zero Gas Ref	Gas Conc.	Time	T ₉₀ Value	Response Time T ₉₀	Instrument Reading	Comment - (eg. zero deviation <2 X the repeatability at zero, system span <2% and zero <2% span gas value)
Instrument Zero ale	alty Zeo Air	0	8.33			0	adjusted to zero
Instrument Span	C3H8	4.6	8:38			すっち	adjusted to SGV.
Instrument Zero Re-Check	2ero Mir	0	8.43			0	L 2x repeatebility atten
System Zero	Ser Ar	0	8.49			0	27. SGV
System Span	C3H8	から	55.8	18.4°	23	6.6.	1 27 SGV
Instrument Zero							
Instrument Span							
Instrument Zero Re-Check							
System Zero							
System Span							

REC Ltd SOP005 Gas Sampling Workbookv6

00dOS

Issue Date: 24/07/12 Issued by: P Furmston

POST CALIBRATION CHECKS

			()	(
Parameter:	NOX	SO ₂	00	(O ₂ (dry)	CO ₂	Job No:	02818	
3	VOCs					Client Site: 141cm when	in wheels.	
Instrument: 3	AQ yeba					Date: 9/4/15	1	
Instrument: 720	AQ BURNE	5				Data Saved as		
Atmospheric Pressure (kPa):	(kPa): [0]	5				FID:	FID: See Page 3	
Ambient Temperature °C:	C: 23.7.					Horiba:	Horiba: See Page 3	

Post Sampling Cal	Span/Zero Gas Ref	Gas Conc.	Time	Response Time T ₉₀ (from Pre-	Instrument Reading	Comment - (eg. drift ⊴% - no correction, >2% ≤5% - correction applied or >5% measurement rejection)
Zero	7 2	0	14.343		0.12	42%. SEV
Span	0	12.03	14.40	32	12.02	221. SGV
Zero	N	0	14:33		9.0	22%. SGV,
Span	3	1564	14.40	41	153.7	127. Sem
Zero	Zero Air	0	かかけし		20.0	4 21, 58v
Span	C3HB	4.4	一十十十十	. 23 .	4.92	x 2.7. 56V
Zero		1,2				
Span						
Zero						
Span					25 67	
Zero						
Span						

APPENDIX 6RANHEAT BOILER

GAS ANALYSER RESULTS

APPENDIX 6.1

COMBUSTION GAS EMISSION DATA SUMMARY

	H ₂ O	O ₂	С	0
Stack Ref	(%vol)	(%vol)	ppm	mg/m³
Ranheat Boiler	4.2	13.5	45.4	54.4
Uncertainty (±)	0.1	0.4	-	2.2

APPENDIX 6.2

TOTAL VOC EMISSION DATA SUMMARY

	Total	I VOCs
Stack Ref	ppm (as C₃H ₈)	mg/m³ as C
Ranheat Boiler	7.7	12.3
Uncertainty (±)	-	1.7

Fig 1: Combustion Gas Emission Data, Alan Nuttall Ltd, Ranheat Boiler, (09/04/15)

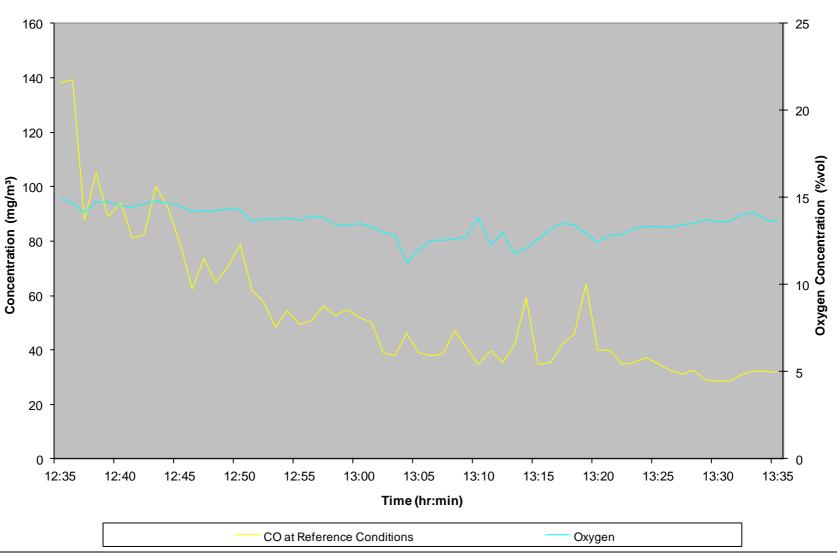
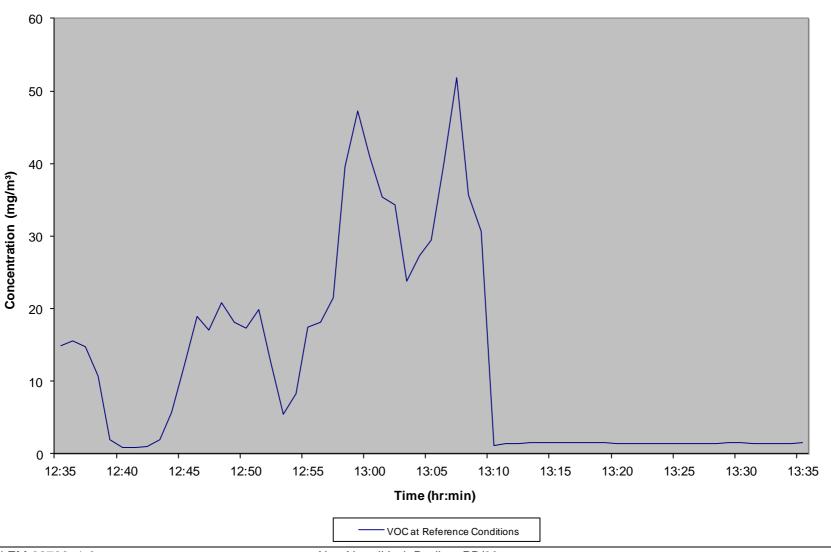



Fig 2: Total VOC Emission Data, Alan Nuttall Ltd, Ranheat Boiler, (09/04/15)

APPENDIX 7
RANHEAT BOILER & WET
SPRAY BOOTH
LABORATORY CERTIFICATES OF
ANALYSIS

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2404

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 469275-1

Date of Report: 17-Apr-2015

Customer: REC Environmental Monitoring Ltd

10 Broad Lane Moldgreen Huddersfield HD5 9BX

Customer Contact: The Emissions Group

Customer Job Reference: EM 1p02818

Date Job Received at SAL: 10-Apr-2015

Date Analysis Started: 14-Apr-2015

Date Analysis Completed: 17-Apr-2015

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with QP22

Report checked and authorised by : Michael Goodman Project Management Issued by : Kayleigh McCann Project Manager

Signature valid
Digitally signed by Kapleigh
McCann
Date: 2015.0. 17 6:44:14 BST
Reason: Issue
Location: SAL

SAL Reference: 469275 Customer Reference: EM 1p02818

Impinger(DI water)

Analysed as Impinger(DI water)

Miscellaneous

			SA	L Reference	469275 007	469275 010	469275 011
		Custo	mer Sampl	e Reference	EM-1p02818/7	EM-1p02818/10	EM-1p02818/11
			1	Test Sample	AR	AR	AR
			Da	ate Sampled	09-APR-2015	09-APR-2015	09-APR-2015
Determinand	Method	LOD	Units	Symbol			
Hydrogen Chloride	IC	0.05	mg/l	U	⁽¹³⁾ 1.1	(195,13) 79	⁽¹³⁾ 1.3
Volume	Vol	1	ml	U	110	260	160

SAL Reference: 469275 Customer Reference: EM 1p02818

Impinger (sodium hydroxide)

Analysed as Impinger (sodium hydroxide)

Miscellaneous

			SAI	L Reference	469275 012	469275 013
		Custor	mer Sampl	e Reference	EM-1p02818/12	EM-1p02818/13
			1	Test Sample	AR	AR
			Da	te Sampled	09-APR-2015	09-APR-2015
Determinand	Method	LOD	Units	Symbol		
Hydrogen Cyanide	Colorimetry	0.05	mg/l	N	<0.05	<0.05
Volume	Vol	1	ml	N	170	520

SAL Reference: 469275 Customer Reference: EM 1p02818

Wash(Acetone)

Analysed as Wash(Acetone)

Miscellaneous

			SA	L Reference	469275 001	469275 003	469275 005	469275 008
		Custo	ner Sampl	e Reference	EM-1p02818/1	EM-1p02818/3	EM-1p02818/5	EM-1p02818/8
		139		Test Sample	AR	AR	AR	AR
			Da	ate Sampled	08-APR-2015	08-APR-2015	09-APR-2015	09-APR-2015
Determinand	Determinand Method LOD Units Symbol							
Particulates (Total)	Grav	0.3	mg	U	0.4	2.8	0.6	9.6

SAL Reference: 469275 Customer Reference: EM 1p02818

Filter GFA 110mm Analysed as Filter GFA 110mm

Miscellaneous

			SA	L Reference	469275 002	469275 004	
		Custo	mer Sampl	e Reference	EM-1p02818/2	EM-1p02818/4	
			1	Test Sample	AR	AR	
Date Sampled 08-APR-2015 08-APR-20							
Determinand	Method	LOD	Units	Symbol			
Particulates (Total)	Grav (5 Dec)	0.10	mg	U	0.92	4.8	

SAL Reference: 469275 Customer Reference: EM 1p02818

Filter Quartz 85mm

Analysed as Filter Quartz 85mm

Miscellaneous

			SA	L Reference	469275 006	469275 009		
		Custo	mer Sampl	e Reference	EM-1p02818/6	EM-1p02818/9		
			1	Test Sample	AR	AR		
	te Sampled	09-APR-2015	09-APR-2015					
Determinand	Method	LOD	Units	Symbol				
Particulates (Total)	Grav (5 Dec)	0.10	ma	U	<0.10	64		

Index to symbols used in 469275-1

Value	Description
AR	As Received
195	Due to levels found in the sample that are outside of the normal calibration range of the instrument, analysis was conducted on a diluted sample
13	Results have been blank corrected.
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Test Certificate

Date 22/04/2015

Client REC Ltd

Unit 19

Bordesley Trading Estate Bordesley Green Rd

Birmingham B8 1BZ Order No.

0250 EM

Certificate No.

WK15-2001

Issue No.

1

Contact Mr Derek Myers

Description

3 samples for formaldehyde in water

Date Received

15/04/2015

Technique Wet Chemistry

One and a Nice	202402	EN 4:: 00040/44		
Sample No.	832192	EM-1p02818/14		Method
Formaldehyde)	<0.1 μg/ml	174 ml	M103(U)
Sample No.	832193	EM-1p02818/15		Method
Formaldehyde	•	<0.1 μg/ml	326 ml	M103(U)
Sample No.	832194	EM-1p02818/16		Method
Formaldehyde)	<0.1 μg/ml	168 ml	M103(U)

Test Certificate Date 22/04/2015

Client REC Ltd Certificate No. WK15-2001

Issue No. 1

Tested By Ashley Lunt Date 22/04/2015

Approved By Date 22/04/2015

Lora McKerracher

Chemist

For and on authority of RPS Laboratories Ltd.

Method Symbols (U) Analysis is UKAS Accredited

(N) Analysis is not UKAS Accredited

 $Concentration\ values\ (mg/m3\ and\ ppm)\ are\ calculated\ on\ the\ basis\ of\ information\ provided\ by\ the\ customer.$

Results stated as ml are refering to the sample volume.

RPS Laboratories terms and conditions apply - a copy is available on request.

Analysis carried out on samples 'as received'

This document may not be reproduced other than in full, except with the written approval of the issuing laboratory.

APPENDIX 8 RANHEAT BOILER & WET SPRAY BOOTH

MANUAL MONITORING RESULTS

PARTICULATE EMISSION DATA SUMMARY- WET SPRAY BOOTH

DATE: 08/04/15 11:14 - 11:54

Sampling Data	
Run Time (min)	40
Total mass H₂O collected (g)	3.9
Pitot tube constant, Cp	0.82
Dry gas meter (DGM) volume (m³)	0.849
Temperature DGM (°C)	17
Temperature stack (°C)	23
Mean pitot tube pressure drop, delta P (mm H ₂ O)	2.7
Orifice meter pressure drop, delta H (mm H ₂ O)	45.5
Barometric Pressure (kPa)	100.7
X-sectional area of stack (m²)	0.503
Nozzle size (mm)	8.98
Flow Data	
Velocity, actual (m/s)	5.5
Velocity, ntp (m/s)	5.1
Vol. Flow, actual (m³/hr)	10,003
Vol. Flow, ntp (m³/hr) Volume sampled, ntp, dry gas (m³)	9,199 0.770
Volume sampled, htp, dry gas (m) Volume sampled, htp, wet gas (m)	0.770 0.775
volume sampled, htp, wet gas (iii)	0.773
Analytical Data	
	4.0
Filter Weight Gain (mg)	4.8
Acetone Wash Residue Weight (mg) Total Particulates (mg)	2.8 7.6
Partics Field Blank (mg)	7.0 1.3
Blank % of ELV	0.9
Blank // Of EEV	0.3
Emission Data	
H O (%/ yel)	0.0
H ₂ O (% vol) Percentage Isokinetic	0.6 100.4
Particulates (mg/m³)	9.8
, e ,	
Uncertainty (± mg/m³) Uncertainty (%ELV)	1.4 0.7
# COUCECIACITY 1%F1 V1	11 /

PARTICULATE & HCI EMISSION DATA SUMMARY RANHEAT BOILER

DATE: 09/04/15 12:35 - 13:05

Sampling Data	
Run Time (min)	30
Total mass H₂O collected (g)	27.7
Pitot tube constant, Cp	0.82
Dry gas meter (DGM) volume (m³)	0.881
Temperature DGM (°C)	25
Temperature stack (°C)	131
Mean pitot tube pressure drop, delta P (mm H₂O)	7.2
Orifice meter pressure drop, delta H (mm H ₂ O)	80.6
Barometric Pressure (kPa)	101.3
X-sectional area of stack (m²)	0.038
Nozzle size (mm)	8.98
Flow Data	
Volcoity, actual (m/s)	40 G
Velocity, actual (m/s)	10.6 7.1
Velocity, ntp (m/s) Vol. Flow, actual (m³/hr)	
	1,448 978
Vol. Flow, ntp (m³/hr) Volume sampled, ntp, dry gas (m³)	976 0.784
Volume sampled, htp, dry gas (m) Volume sampled, htp, wet gas (m³)	0.764
volume sampled, mp, wet gas (m)	0.010
Analytical Data	·
Filter Meinle Orin (m. r.)	64.0
Filter Weight Gain (mg)	64.0 9.6
Acetone Wash Residue Weight (mg)	9.6 73.6
Total Particulates (mg) Partics Field Blank (mg)	73.6 0.6
Blank % of ELV	0.8
Mass HCI (ug)	20748
HCI Field Blank (mg/l)	1.10
Absorber Efficiency (%HCl in Impingers 1+2)	99.0
/go.cg	
Emission Data	
11.0 (0():=1)	4.0
H ₂ O (% vol)	4.2
Percentage Isokinetic	100.5
Particulates (mg/m³)	89.9
Uncertainty (± mg/m³)	3.8
Uncertainty (%ELV)	1.9
HCI (mg/m³)	25.4
Uncertainty (± mg/m³)	3.1
Uncertainty (%ELV)	3.1

FORMALDEHYDE EMISSION DATA SUMMARY

DATE: 09/04/15 13:46 - 14:16

Sampling Data	
Run Time (min)	30
Total mass H₂O collected (g)	23.5
Pitot tube constant, Cp	0.82
Dry gas meter (DGM) volume (m³)	0.810
Temperature DGM (°C)	29
Temperature stack (°C)	133
Mean pitot tube pressure drop, delta P (mm H ₂ O)	6.6
Orifice meter pressure drop, delta H (mm H ₂ O)	74.2
Barometric Pressure (kPa)	101.3
X-sectional area of stack (m²)	0.038
Nozzle size (mm)	8.98
Flow Data	
Velocity, actual (m/s)	10.2
Velocity, ntp (m/s)	6.8
Vol. Flow, actual (m³/hr)	1,391
Vol. Flow, ntp (m³/hr)	936 0.710
Volume sampled, ntp, dry gas (m³) Volume sampled, ntp, wet gas (m³)	0.710
volume sampled, mp, wet gas (m)	0.700
Analytical Data	
Mass HCHO Imp 1+2 (ug)	<49.4
HCHO Field Blank (mg/l)	<0.1
Absorber Efficiency (%HCHO in Impinger 1)	66.0
, , , , , ,	
Emission Data	
11.0 (0/)	4.0
H₂O (% vol) Percentage Isokinetic	4.0 94.9
HCHO (mg/m³)	94.9 <0.067
Uncertainty (± mg/m³)	<0.010
onocitating (± mg/m /	\0.010

HCN EMISSION DATA SUMMARY

Sampling Data	Ranheat Boiler
Start Time/Date	13:31, 09/04/15
End Time/Date	14:41, 09/04/15
Sampling Period (min)	40
DGM start (dry m³)	52.229
DGM end (dry m ³)	52.295
Volume Sampled (dry m ³)	0.066
Ambient Temp (°C)	23.5
Ambient Press (kPa)	100
Wt of Water (g)	3.8
Volume Water (m³)	0.005
Volume Sampled, 273K, 101.3kPa (dry m ³)	0.060
Volume Sampled, 273K, 101.3kPa (wet m ³)	0.065
Volume NaOH Impinger 1+ 2 (ml)	520
, <u> </u>	
Analytical Data	
HCN Blank (mg/l)	<0.05
HCN in NaOH Imp1+2(mg/l)	<0.05
total HCN (µg)	26
Emission Concentration Data	
Moioturo (9/yol)	7.3
Moisture (%vol)	
HCN (mg/m ³)	<0.40

ISOKINETIC SAMPLING WORKBOOK

Site	Au	AN NUTTALS	1
Stack		PRAY BOOTH	
Job Number		M-1102818.	
Date		08/04/15	1
Sampling Team		HB/AW	
Equipment Used:-	MUST	enter AQ numbers below	
Nozzle(s)	AQ	153:	
Probe(s)		14.	
Pitot(s)	AQ	104.	1
Timer	AQ	308	1
Glassware Set		Bhen Set1	
Thermocouple(s)	AQ	ILer.]
Temperature Indicator	AQ	126	
Control Console	AQ	126	
Digital Manometer	AQ	PP03	14/12/15
Tape Measure	AQ	26 x	
Balance	AQ	090	

Workbook checked by: M. Euro

This workbook should only be reproduced in full except with written approval from REC Ltd Any opinions or interpretations are outside the laboratory's UKAS schedule of accreditation

IMPORTANT!!!

ANY CROSSINGS OUT SHOULD BE MADE USING A SINGLE LINE AND INITIALLED ALL SECTIONS TO BE COMPLETED AND SIGNED WHERE APPROPRIATE

Issue Date: 7/1/15
Issued by: P Furmston

REC Ltd SOP005 Isokinetc Sampling Workbook

Issue No.:7 Page 1 of 13 SITE NOTES & BLANK(S) DETAILS - Please use this page to record site details, problems on site re access, non conforming work etc, pitot and DGM leak check results. For blank(s) details, include stack ref, substance, time taken, etc.

	BSENOI	3284.		
	Blanh	3284.	8/94/15	

				· · · · · · · · · · · · · · · · · · ·
p. =		ingental in a	170,770,722,3-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-	
,,				**************************************
				
		· · · · · · · · · · · · · · · · · · ·	*****	
_				
···				
	,,			
	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		
·			***	de a facilità de la compansión de la compa

DIAGRAMS OF STACK

Plan of site layout including approx dimensions	Schematic diagram of the stack inc dimensions
	Stack Dimensions = cm (diameter) x cm (traverse 1st)
	x cm (diameter) x cm (traverse 1st)

Other Notes

Issue Date: 7/1/15

LEAKAGE RATES FOR CONSOLE DRY GAS METERS

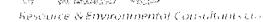
Leakage to be less than 2% of maximum nominal flowrate of meter

	2% leak Umin	0.16	0.20	0.25	0.28	0.32	0.35	0.38	0.39	0,43	0.44	0.47	0.49	0.51	0.54	0.56	0.58	0.59	0.61	0.62	0.64	0.68	0.70	0.73	0.76
AQ140	l/min	8.1	9.8	12.3	14.1	16.0	17.4	18.8	19.6	21.4	22.2	23.7	24.5	25.5	27.0	27.8	28.8	29.6	30.4	31.2	32.2	33.8	35.2	36.7	37.8
	O²H ww	9	10	15	20	25	30	35	40	45	20	55	09	65	0.2	75	80	85	90	92	100	110	120	130	140

_	-				_	_	_		_			_	_												_		_
0.50			2% feak l/min	0.15	0.21	0.25	0.29	0.33	0.36	0.39	0.42	0.44	0.47	0.49	0.52	0.54	0.56	0.58	09'0	0.62	0.63	0.65	0.67	0.70	0.73	0.76	0.79
2110		AQ126	l/min	7.3	10.5	12.7	14.7	16.5	17.9	19.5	20.8	22.0	23.5	24.6	26.0	26.9	27.8	28.9	29.8	30.8	31.7	32.4	33.4	35.2	36.6	38.2	39.6
			mm H ₂ O		10	15	20	25	30	35	40	45	90	55	90	65	70	75	80	85	90	95	100	110	120	130	140

	2% leak l/min	0.15	0.21	0.25	0.28	0.31	0.33	0.36	0.38	0,40	0.42	0.44	0.46	0.48	09'0	0.51	0.53	19'0	0.56	29'0	0.59	0.62	0.64	0.66	0.69
AQ002	lfmin	7.7	10.3	12.6	14.2	15.4	16.4	17.9	18.9	20.1	21.2	22.1	23.2	24.1	24.9	25.7	26.5	27.1	27.9	28.7	29.5	30.9	32.1	33.1	34.5
	O ^z H ww	5	10	15	20	25	30	35	40	45	50	55	60	65	7.0	7.5	80	85	90	95	100	110	120	130	140

	2% leak l/min	0.15	0.20	0,25	0.28	0.30	0.32	0.35	0.37	0.39	0.42	0.44	0.46	0.47	0.49	0.51	0.52	0.53	0.55	0.57	0.58	1970	0.63	0.65	0.68
AQ003	Vmin	7.5	10.1	12.3	13.9	15.1	16.1	17.6	18.6	19.7	20.9	21.8	22.9	23.7	24.5	25.3	26.1	26.7	27.5	28.3	29.1	30.5	31.7	32.7	34.1
	mm H ₂ O	5	10	15	20	. 52	30	35	40	45	50	55	09	65	70	75	80	85	90	35	100	110	120	130	140


AQ325	Umin 2% leak l/min	8.2 0.16	11.6 0.23	13.8 0.28	<u>-</u> .	16.8 0.34					23.3 0.47							30.2 0.60		31.7 0.63			35.0 0.70		
	mm H ₂ O	5	10	15	20	25	30	35	40	45	20	55	09	99	70	7.5	80	85	90	95	100	110	120	130	140

	AQ326	
mm H ₂ O	l/min	2% Teak Vimin
5	8.0	0.16
10	11.0	0.22
15	13.2	0.26
20	15.0	0.30
25	16.5	0.33
30	17.9	0.36
35	19.1	0.38
40	20.5	0.41
45	21.7	0.43
20	23.0	0.46
92	24.2	0.48
60	25.1	0.50
99	26.1	0.52
70	26.5	0.53
75	27.9	0.56
80	28.5	0.57
85	29.4	0.59
90	30.0	0.60
95	30.9	0.62
100	31.9	0.64
110	33.8	0.68
120	34.6	0.69
130	35.9	0.72
140	37.2	0.74

	A		1	T		1		1	T	· · · · · · · · · · · · · · · · · · ·
Site:	ALAN N	utmals.	MOISTURE	Cor	ntents	Start W	eight (g)	End Weight (g)	Gail	n (g)
Stack Description:	SPRAY	BOOTH.	Impinger 1	0, 1	no.	599	.2	590.4	~~	8
Test No:	PARTI	C	impinger 2	0, 4	120	669	,9	673.3	3	4
Date:	oglou	15.	Impinger 3	BL	. ц	666	.	667.4	1.2)
Filter No:	48°C	<u>}</u>	Impinger 4	S-	G.	807	1.8	815.8.	\&-	· O ,
Site Team:	AWIN	45	Impinger 5							<u> </u>
Start time	Hilly	hr:min	Impinger 6							
End time	11:54	hr:min	Impinger 7				,			
total time sampled	لباه	hr:min	Leak Check (see lea	akage rate	conversion	ons mmH₂O	to I/min an	d 2% l/min values)		
Nozzle diameter:	8.997	mm	Max nominal flowra preliminary pitot tra		32.4)	l/min		flowrate - (from ampled/time)	28.	l/min
K Factor:	16.8	Ц.	2% of max nominal - (from preliminary traverse)		0.65	l/min		npling flowrate - ume sampled/time)	0.57	l/min
Stack Pres (with +/- above barometric if unknown enter zero)	ف	mm H₂0	Actual pre-test leak result + Vac Gauge		0. u	18 "Hg		st-test leak check ac Gauge Reading	0.2 Vmin	_18°
Reference Standard (E.g BS EN 13284,USEPA M26a etc.)	B>4N 19	284.	COMMENTS:		•			· · · · · · · · · · · · · · · · · · ·		
Does test conform to standard (Y/N)	· 4	,	(E.g. Deviations from	the Metho	ods)					
Start volume reading	4.6002	nī³								
End volume reading	5.4494	m³								
Barometric Pressure	100.7	kPa								
Reference O₂	Alu	%								
Amblent Temp	14.	°C `								
·			<u> </u>				•		· · · · ·	

16.84

						`	T		1				
	Time	Sample Point	Time at each position	ΔΡ	ΔН	Stack Temp	Probe Temp	Meter In	Meter Out	Oven Temp	Exit Temp	Cond, Temp	Vac.
	Hr : Min		min		mm H₂O	°c	°C	°c	°c	°c	°C	°C	in Hg
1:	11:14	Aı	5	\$,0	847	15	160	15	ις	160	12.		-3.5
2:	19			5.0	84.2	17	160	16	16	160	14		-i _{f.0}
3:	24	A 2		3.0	50.5	23	160	17	17	160	15		~3.∞
4:	29			3.0	50.5	24	160	18	17	160	15		-3.0
5:	34	A 3		1.8	30,3	26	160	1.2	18	160	16		-2.0
6:	39			1.8	30,3	25	160	١٨	18	160	16.		-2,0
7: 	44	AY		1.0	168	27	160	14	19	160	16		1.0
8:	49			1.0	16.8	27	160	19	19	160	17		-1.0
9:	SU	En	1										
10:													
11:													
12:				<u></u> -									
13:													
14:			·-										
15:													_
16													
17:							-					_	
18:		-						i					
19:													
20:													
21:					_								
22:				<u></u> .									
23:													
24:													
25:							_				_		
26:													
27:													
	Average values												

ISOKINETIC SAMPLING WORKBOOK

Site	ALAr	1 NUTTALS
Stack		OILER
Job Number	En	1-1802818
Date	1	9/04/15
Sampling Team		AWIAB
Equipment Used:-	MUST	enter AQ numbers below
Nozzle(s)	AQ	i53'
Probe(s)		i4 ·
Pitot(s)	AQ	104
Timer	AQ	308.
Glassware Set		Brow Sett.
Thermocouple(s)	AQ	147.
Temperature Indicator	AQ	126
Control Console	AQ	126.
Digital Manometer	AQ	126.
Tape Measure	AQ	268.
Balance	AQ	010.

Workbook checked by:	14 Ecino 0.7	

This workbook should only be reproduced in full except with written approval from REC Ltd Any opinions or interpretations are outside the laboratory's UKAS schedule of accreditation

IMPORTANT!!!
ANY CROSSINGS OUT SHOULD BE MADE USING A SINGLE LINE AND INITIALLED
ALL SECTIONS TO BE COMPLETED AND SIGNED WHERE APPROPRIATE

Issue Date: 7/1/15 Issued by: P Furmston REC Ltd SOP005 Isokinetc Sampling Workbook Issue No.:7 Page 1 of 13 SITE NOTES & BLANK(S) DETAILS - Please use this page to record site details, problems on site re access, non conforming work etc, pitot and DGM leak check results. For blank(s) details, include stack ref, substance, time taken, etc.

BLEW 13251	4. Blank competed a/4/15-
85EN 1911	
<u>usera</u>	4316. Flunh competed 9/4/15

DIAGRAMS OF STACK

Plan of site layout including approx dimensions	Schematic diagram of the stack inc dimensions
	Stack Dimensions = cm (diameter) x cm (traverse 1st)

Other Notes

Issue Date: 7/1/15 Issued by : P Furmston

LEAKAGE RATES FOR CONSOLE DRY GAS METERS

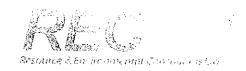
Leakage to be less than 2% of maximum nominal flowrate of meter

AQ140

mm H ₂ O 5 10 10 15 20 20	AQ126 Ilmin	
mm H ₂ O 5 10 15 20 25	l/min	
5 10 15 20 20		2% leak l/min
10 15 20 25	7.3	0.15
15 20 25	10.5	0.21
20	12.7	0,25
25	14.7	0.29
	16.5	0.33
30	17.9	0.36
35	19.5	0.39
40	20.8	0.42
45	22.0	0.44
20	23.5	0.47
55	24.6	0.49
09	26.0	0.52
65	26.9	0.54
7.0	27.8	0.56
75	28.9	0.58
80	29.8	0.60
85	30.8	0.62
30	31.7	0.63
92	32.4	0.65
100	33.4	0.67
110	35.2	0.70
120	36.6	0.73
130	38.2	0.76
140	39.6	0.79

	2% leak I/min	0.15	0.21	0.25	0.28	0.31	0.33	0.36	0,38	0.40	0.42	0.44	0.46	0.48	0.50	0.51	0.53	0.54	0.56	0.57	0.59	0.62	0.64	0.66	0.69
AQ002	l/min	7.7	10.3	12.6	14.2	15.4	16,4	17.9	18.9	20.1	21.2	22.1	23.2	24.1	24.9	25.7	26.5	27.1	27.9	28.7	29.5	30.9	32.1	33.1	34.5
	mm H ₂ O	5	10	15	20	25	30	35	40	45	99	55	09	59	0.2	75	80	35	90	36	100	110	120	130	140

	2% leak l/min	0.15	0.20	0.25	0.28	0.30	0.32	0.35	0.37	0.39	0.42	0.44	0.46	0.47	0.49	0.51	0.52	0.53	0.55	0.57	0.58	0,61	0.63	99:0	0.68
AQ003	l/min	7.5	10.1	12,3	13.9	15.1	16.1	17.6	18.6	19.7	20.9	21.8	22.9	23.7	24.5	25.3	26.1	26.7	27.5	28.3	29.1	30.5	31.7	32.7	34.1
	O ^z H ww	\$	10	15	20	52	Œ	32	40	45	90	92	09	99	70	75	80	85	90	36	100	110	120	130	140


	AQ326	
mm H ₂ O	l/min	2% leak I/min
5	3.0	0.16
10	11.0	0.22
15	13.2	0.26
20	15.0	0.30
25	16.5	0.33
30	17.9	0.36
35	19.1	0.38
40	20.5	0.41
45	21.7	0.43
20	23.0	0,46
55	24.2	0.48
60	25.1	0.50
65	26.1	0.52
70	26.5	0.53
75	27.9	0.56
80	28.5	0.57
85	29.4	0.59
90	30.0	09:0
95	30.9	0.62
100	31.9	0.64
110	33.8	0.68
120	34.6	69'0
130	35.9	0.72
740	0.40	7.1.0

	SUTTALS	MOISTURE	Con	itents	Start W	/eight (g)	End Weight (g)	Gai	n (g)
		Impinger 1	Ð, F	lro	68	14,6 2.1 48	648.1	3	.Υ.
		Impinger 2	0,1	40	59		3 670.1	-	. 7
09/ou	09/04/15.		0,40		682 1HB 729.5		733.4	3.	. ")·
499	334 C,48	Impinger 4	βi	بالر	667	G-1443	573,2	0.	ł
AWI	HS	lmpinger 5	5,	G.	878	3.5	888.7	10	. <u>/</u> .
12:35	bramin	Impinger 6							
13:05	hr:min	Impinger 7							
0 0:30	hr:min	Leak Check (see lea	ıkage rate	conversion	ons mmH ₂	O to I/min :	and 2% I/min values	s)	
1.9 p	mm			25,0	l/min			294	l/min
11.24				6. نچ.	l/min			0,58	. I/min
-27	mm H20			ら.レ Vmin	/ (6 "Hg			0 . 2 ·	- / X'
		COMMENTS:							· ·
٧.		(E.g. Devřations from	the Metho	ods)					
3.07/1	m³								
9024	m³								
.o d 23	kPa							;	
·	%								
14	°c					,			
	12:35 3:05 3:05 00:30 1.24 -2:4 35 = 70 35 = 70 9:024	1934 AW/HS 7:35 homin 3:05 homin 00:30 homin 9:44 mm 1.24 -2:7 mm H20 35:EVO 13254 35:EVO 131544 35:EVO 111 Mai 9:024 mai 9:024 mai 9:024 mai 9:024 mai 9:024 mai	PARTICIAC Impinger 2 09/04/15 Impinger 3 42.33 4 Impinger 4 AWIMS Impinger 5 72.35 hr.min Impinger 6 3:05 hr.min Leak Check (see leater of the composition of th	PARTICIAC Impinger 2 0: 1 09/04/15 Impinger 3 0: 1 497.46 Impinger 3 0: 1 497.46 Impinger 4 6: 1 497.46 Impinger 5 5. 7:35 Impinger 6 Impinger 6 3:05 Impinger 7 Max nominal flowrate - (from preliminary pitot traverse) 1:24 Check (see leakage rate - (from preliminary pitot traverse) 4:27 mm H20 Actual pre-test leak check result + Vac Gauge Reading 5:5 EW 13254 COMMENTS: 6:9. Deviations from the Method 7:00.3 kPa 7:00.3 kPa 7:10.15 Impinger 2 1:10.15 Impinger 3 1:10.15 Impinger 3 1:10.15 Impinger 4 1:10.15 Impinger 5 1:10.15 Impinger 5 1:10.15 Impinger 5 1:10.15 Impinger 6 1:10.15 Impinger 6 1:10.15 Impinger 7 1:10.15 Impinger 7 1:10.15 Impinger 6 1:10	PARTICIAC Impinger 2 0: 14.0 OP/OU/IS Impinger 3 0: 14.0 Lear Impinger 4 Bill Impinger 5 S.G. T: 35 hr.min Impinger 6 Impinger 6 Impinger 7 Impinger 7 Impinger 6 Impinger 7 Impinger 7 Impinger 6 Impinger 7 Impinger 7 Impinger 7 Impinger 8 Impinger 9 Impi	Max nominal flowrate - (from preliminary pitot traverse) 1.24 1.24 1.25 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.27 1.26 1.27 1.26 1.27 1.26 1.27 1.28 1.29 1.29 1.20 1.	PARTICIAC Impinger 1 P, Az 0 GZZ, ths 160, the Square of Go, the S	BOILER PARTICIFIC Impinger 2 D; Ho SQL HB 648.1 PARTICIFIC Impinger 3 D; Ho SQL HB 733.4 1914	Boiled Impinger 1 D, Hz 0 GSZ.THB 648.1 3 PARTIC/HC Impinger 2 D; Hz 0 GSQ.THB 670+1 3 O9/ou/15 Impinger 3 D, Hz 0 GSQ.THB 733.4 3 LAT.HB Impinger 4 BUL GGTTTHB 573.2 0. AW/HB Impinger 5 S.G. 878.5 888.7 10 7:35 hr.min Impinger 6 Impinger 7 Impinger 7 Max nominal flowrate - (from preliminary pitot travers) P P P P Mm Preliminary pitot travers) P Max nominal flowrate - (from preliminary pitot travers) P Max nominal f

	Time	Sample Point	Time at each	ΔΡ	ΔН	Stack Temp	Probe Temp	Meter In	Meter Out	Oven Temp	Exit Temp	Cond.	Vac.
	Hr : Min		min	mm H₂O	mm H₂O	°c	°C	°c	°c	°C	°c	°C	in Hg
1:	12:35	C.P.	5	8.0	89.9	130	odi	27	21	[60	lle		-1.0
2:	Lę v	1			78.7	1		1	17	160	14		-1. v
3:	4S			7.0	78.7	130	160	29	19	lbo	15		-1.0
4:	50			7.0	78.7	131	160	30	21	160	16		-2.0
5:	55			7.0	78.7	132	160	30	22	160	17		-2.0
6: 	13:00	1	l	1	78.7		160	31	24	160	17		-25
7:	13:05	GNO V	<u> </u>										
8:	-		<u></u>									_	
9:									<u> </u>				
10:													<u> </u>
11:													
12:												***************************************	
13:				*									
14:													
15:		· · · · · · · · · · · · · · · · · · ·											
16	·	~											
17:		!									<u></u>		
18:							<u></u>			-			
19:			-									·	
20:							ļ		<u>-</u>				
21;]							
22: 23:													
24:	***												-
25:													
26;				<u>- </u>									
26; 27:													
£1.	Avo											<u>.</u>	
	Average values						,,						

		at a filmt aka was with a yet a san a s						<u> rangon, punyang pagamantan kanada dan da</u>		of territory and the
Site:	ALAN	NATALS	MOISTURE	Con	tents	Start W	eight (g)	End Weight (g)	Gail	n (g)
Stack Description:	Boile	R	lmpinger 1	D. if	20	65	1.3	656.8.	خ	5
Test No:	followed	EHYDE,	lmpinger 2	D, 14	ho	689	ζ.Ι	695,9	2.	8
Date:	09/0 u	lis.	Impinger 3	0,1	120	741	9	747.9	3	ر .
Filter No:	N/I	٠.	Impinger 4	BU	iK	57	3.3	574.3	1.3	ני
Site Team:	AWI	ts.	Impinger 5	Sal	G .	88	۲.8	894.9	<i>b.</i>	2:
Start time	13:46	hrimin	lmpinger 6							
End time	14:16	hrimia	Impinger 7							
total time sampled	00:30	br:min	Leak Check (see lea	ıkage rate	conversion	ons mmH ₂	O to I/min	and 2% I/min values	;)	
Nozzle diameter:	8,99	mm	Max nominal flowra preliminary pitot tra		08-4	l/min		flowrate • (from ampled/time)	26.9	l/min
K Factor;	11.2	4.	2% of max nominal - (from preliminary traverse)	nitot	v-19	l/min	2% of san (from volu	npling flowrate - ume sampled/time)	0.54	, l/min
Stack Pres (with +/- above barometric if unknown enter zero)	-22	mm H20	Actual pre-test leak result + Vac Gauge		0 · 4	-16 "Hg		st-test leak check ac Gauge Reading	0.2 1/min	-18 "Hg
Reference Standard (E.g BS EN 13284,USEPA M26a etc.)	USEAN	316 -	COMMENTS:							
Does test conform to standard (Y/N)	4	-	(E.g. Deviations from	the Metho	ods)					
Start volume reading	39176	m³								
End volume reading	47274	m³								
Barometric Pressure	101.3	kPa								
Reference O ₂		%								
Ambient Temp	16,	°¢								
	·			*****						

	Time	Sample Point	Time at each position	ΔΡ	ΔН	Stack Temp	Probe Temp	Meter in	Meter Out	Oven Temp	Exit Temp	Cond. Temp	Vac.
	Hr : Min		min	mm H₂O	mm H ₂ O	°c	°c	°c	°c	აი	°c	°C	in Hg
1:	13:46	Col.)	7.	78.7	132.	120	27	26	120	14		-1.0
2:	51			7	78.7	133	120	33	27	120	14		-1.0
3:	56			7	78.7	131	120	33	27	170	14		-1,0
4:	14:01			7	78.7	133	120	33	28	120	15		-2.0
5:	6.				78.7		120	32	28	120	16		-4.5
6:	N	\		4.6.	Str	134	120	31	28	120	17		-7.5
7:	16.		Ch	Λ.									
8:													
9:													
10:													
11:								_					
12:													
13:													
14:													
15:													
16													
17:													
18:									·				
19:													
20:													
21;													
22:													•
23:													
24:													
25:		-											
26:	, su												•••
27:							4 10:00 4						
	Average values												

NON-ISOKINETIC AND MOISTURE SAMPLING WORKSHEET

Client:

A. Nuttal

Sampling Location:

wood burning

boiler outlet

Job No.:

02818

Pump Ref AQ:

33 199

Date:

2/4/15

DGM Ref AQ:

1987 33 199

Sampling Operator:

AU /HR

Balance Ref AQ:

90

Test:

HCN

T/C + Reader AQ: 301 163 .

Checked by/ Date:

Mel 11/sli5"

Start Leak Check:

0.0 L/ min

End Leak Check:

0.0 Llmin

Start Time:

13.31

End Time:

14-11

DGM Start (m³):

52, 229

DGM Start Temp (°C)

23

DGM End (m3):

52.2948

DGM End Temp (°C)

Period Sampled (min):

40

Barometric Pressure (kPa):

Impinger Ref	Contents	Start Weight (g)	End Weight (g)	Weight Gain (g)
1	O-Im NgOH	e3e4	637.4	0.7
2	0.1m NacH	7.52,4	753.6	1.2.
3	Empty	395 - 1	395.7	0.6.
4	Silica	640.2	641.5	1.3
The second secon	and the factor processes the first to the first to the factor of the second second		Total Gain (g)	2 r ·

APPENDIX 9 RANHEAT BOILER & WET SPRAY BOOTH

UNCERTAINTY CALCULATIONS

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method

Spreadsheet completed by: ME 11/5/15 Date: DM 11/5/15 Date: 11/5/15 Measurement Equation

Limit value 200 mg.m Reference oxygen 21.0 by volume $c = \frac{m}{V} f_c$

measured concentration	9.009				V		
Measured Quantities	Symbol	Value	Standard uncertainty	Units	Uncertainty as percentage	Uncertainty at	lv Requirement of sto
Sampled Volume	V _m	0.849	uV _m	0.001 m³	0.1	2	<=2%
Sampled gas Temperature	T _m	290.4375	uTm	2 K	0.6	9	<=1%
Sampled gas Pressure	ρ_{m}	100.7	$u\rho_m$	1 kPa	0.9	9	<=1%
Sampled gas Humidity	H _m	0.626303678	uH _m	1 % by volume	159.6	7	<=1%
Oxygen content	$O_{2,m}$	21.0	$uO_{2,m}$	0.1 % by volume	0.4	8	<=5%
Mass particulate	m	7.6	um	0.522015325 mg	6.8	7 0.34	<5% of limit value
Note - Sampled gas humidity,	temperature and press	sure are values at the gas meter		<u> </u>			
Leak	L	2		%	2.0	0	<=2%
Uncollected Mass	UCM	0		mg		0	<=10%
(Instack filter - no rinse)							
Intermediate calculations							
Factor for std conds	fs	0.929					
uncertainty components	symbol	sensitivity coeff	i	u (in units of fs)			
	ρ_{m}	0.009		0.009			
	H_{m}	0.009		0.009	$f = \frac{(100 - H_m)}{273} \frac{\rho_m}{\rho_m}$		
	$T_{\rm m}$	0.003		0.006	$T_s = 100 \qquad T_m = 101.3$		
	ufs			0.015	1.5	7	
Corrected volume	V	0.789	uV	0.012 m °	$V = V_m f_s ag{1.5}$	8	
Factor for O2 correction	fc	1.00					
uncertainty components	symbol	sensitivity coeff	1	и	$_{f} = 21 - O_{2,ref}$		
	$O_{2,m}$	1.00		0.100	$f_c = \frac{2.76}{21 - O_{2,m}}$		
Factor for O2 Correction	ufc	1.00		0.100	10.0	0	

Parameter	Uncertainty, Value	Units	Sensitivity coeff Uncert	ainty in Result	Uncertainty as %
Volume(standard conditions)	V	0.789 m³	12.43	0.15 mg.m ⁻³	1.58 %
Mass	m	7.60 mg	1.29	0.67 mg.m ⁻³	6.87
Factor for O2 Correction	fc	1.00	0.00	0.00 mg.m ⁻³	0.00 %
Leak	L	0.11 mg.m ⁻³	1.00	0.11 mg.m ⁻³	
Uncollected mass	UCM	0.00 mg	1.29	0.00 mg.m ^{-s}	
Combined uncertainty				0.70 mg.m ⁻⁵	

Expanded uncertainty	expressed with a level of confidence of 95%	14.28 %
Expanded uncertainty	expressed with a level of confidence of 95%	1.40 mg.m ⁻³
Expanded uncertainty as percentage	centage of limit value	0.7]% of ELV

Uncertainty calculation for HCI Impingement Method

rec	ME	Checked by:	DM	
Date:	11/5/15	Date:	11/5/15	Measurement Equation
Limit value	100 mg.m ⁻³	Reference oxygen	21 % by volume	$c = \frac{m}{f}$
Measured concentration	25.35 mg.m ⁻³	·-		$c = \frac{1}{V} J_c$

Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertainty as percentag	e Uncertainty	at In Requirement of s
Sampled Volume	V _m	0.881	uV_m	0.001	m³	0.	11	<=2%
Sampled gas Temperature	T _m	297.9166667	uTm	2	k	0.0	67	<=1%
Sampled gas Pressure	$\rho_{\rm m}$	101.3	$u\rho_m$	1	kPa	0.9	99	<=1%
Sampled gas Humidity	H _m	4.21	uH _m	1	% by volume	23.7	<mark>73</mark>	<=1%
Oxygen content	$O_{2,m}$	21	uO _{2,m}	0.1	% by volume	0.4	48	<=5%
Mass HCl	m	20748	um	1209.81	ug	5.8	33 1.48	<5% of limit value
Note - Sampled gas humidit	y, temperatui	re and pressure are values at the gas i	neter					
Leak	L	2			%	2.0	00	<=2%
Uncollected Mass	UCM	0			mg		0	<=10%
Impinger Weight	Iw	1.3			%	1	.3	<=5%
Intermediate calculations								
Factor for std conds	fs	0.88						
uncertainty components	symbol	sensitivity coeff		u (in units of fs	s)			
	ρ_{m}	0.009		0.009				
	$H_{\rm m}$	0.009		0.009		$f = \frac{(100 - H_m)}{273} \frac{273}{\rho_m}$		
	$T_{\rm m}$	0.003		0.006		J _s 100 T _m 101.3		
	ufs			0.014		1.9	59	
Corrected volume	V	0.818	uV	0.012	m³	$V = V_m f_s $ 1.5	50	
Factor for O2 correction	£-	4.00						
	fc					21 0	I	
uncertainty components	symbol			u		$f_c = \frac{21 - O_{2,ref}}{21 - O_{2,m}}$	I	
	$O_{2,m}$			0.100		$21 - O_{2,m}$		
Factor for O2 Correction	ufc	1.00		0.100		10.0	00	

Parameter	Uncertainty Value	Units	Sensitivity coeff U	Incertainty in Result	Uncertainty as %
Volume(standard conditions)	V	0.818 m ³	30.98	0.38 mg.m ⁻³	1.50 %
Mass HCI	m	20748.00 μg	1.00	1.48 mg.m ⁻³	5.83 %
Factor for O2 Correction	fc	1.00	0.00	0.00 mg.m ⁻³	0.00 %
Leak	L	0.29 mg.m ⁻³	1.00	0.29 mg.m ⁻³	
Uncollected mass	UCM	0.00 mg	1.00	0.00 mg.m ⁻³	
Impinger weight	1	0.19 mg.m ⁻³	1.00	0.19 mg.m ⁻³	
Combined uncertainty				1.57 mg.m ⁻³	

Expanded uncertainty	expressed with a level of confidence of 95%	12.35 %
Expanded uncertainty	expressed with a level of confidence of 95%	3.13 mg.m ⁻³
Expanded uncertainty as pe	rcentage of limit value	3.1 % of ELV

Chloride Analysis Uncertainty

HCI Uncertainty 4.00 % Volume Uncertainty 1 % Uncertainty of HCI µg Calc 5.83 %

Uncertainty calculation for HCI Impingement Method

rec ME Checked by: DM Date: 11/5/15 Date: 11/5/15 Measurement Equation

Limit value 100 mg.m Reference oxygen 21 by volume $c = \frac{m}{V} f_c$

						•		
Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertainty as percentage	Uncertainty at Iv	Requirement of st
Sampled Volume	V _m	0.881	uV_m	0.001	m³	0.	11	<=2%
Sampled gas Temperature	T _m	297.9166667	uTm	2	k	0.	67	<=1%
Sampled gas Pressure	ρ_{m}	101.3	$u\rho_m$	1	kPa	0.	99	<=1%
Sampled gas Humidity	H _m		uH _m	1	% by volume	23.	<mark>73</mark>	<=1%
Oxygen content	$O_{2,m}$	21	$uO_{2,m}$	0.1	% by volume	0.	48	<=5%
Mass HCl	m	20748	um	1209.81	ug	5.	83 1.48	<5% of limit value
Note - Sampled gas humidity,	temperature ar	nd pressure are values at the gas meter						
Leak	L	2			%	2.	00	<=2%
Uncollected Mass	UCM	0			mg		0	<=10%
Impinger Weight	Iw	1.3			%	1	.3	<=5%
Intermediate calculations								
Factor for std conds	fs	0.88						
uncertainty components	symbol	sensitivity coeff		u (in units of fs)				
	ρ_{m}	0.009		0.009				
	H_{m}	0.009		0.009		$f_{-} = \frac{(100 - H_m)}{273} \frac{273}{\rho_m}$		
	$T_{\rm m}$	0.003		0.006		$T_{s} = 100 \qquad T_{m} = 101.3$		
	ufs			0.014		1.	59	
Corrected volume	V	0.818	uV	0.012	m³	$V = V_m f_s 1.$	50	
Factor for O2 correction	fc	1.00						
uncertainty components	symbol			u		$f = \frac{21 - O_{2,ref}}{}$		
uncertainty components	O _{2,m}			0.100		$f_c = \frac{21 - O_{2,ref}}{21 - O_{2,m}}$		
Factor for O2 Correction	ufc	1.00		0.100		10.	00	

Parameter	Uncertainty, Value	Units	Sensitivity coeff \	Incertainty in Result	Uncertainty as %
Volume(standard conditions)	V	0.818 m ³	30.98	0.38 mg.m ⁻³	1.50 %
Mass HCI	m	20748.00 μg	1.00	1.48 mg.m ⁻³	5.83 %
Factor for O2 Correction	fc	1.00	0.00	0.00 mg.m ⁻³	0.00 %
Leak	L	0.29 mg.m ⁻³	1.00	0.29 mg.m ⁻³	
Uncollected mass	UCM	0.00 mg	1.00	0.00 mg.m ⁻³	
Impinger weight	1	0.19 mg.m ⁻³	1.00	0.19 mg.m ⁻³	
Combined uncertainty				1.57 mg.m ⁻³	

Expanded uncertainty expressed with a level of confidence of 95%	12.35 %
Expanded uncertainty expressed with a level of confidence of 95%	3.13 mg.m ⁻³
Expanded uncertainty as percentage of limit value	3.1 % of ELV

Chloride Analysis Uncertainty

HCI Uncertainty 4.00 % Volume Uncertainty 1 % 1 % Uncertainty of HCI µg Calc 5.83 %

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method

Spreadsheet completed by: ME 11/5/15 Date: DM 11/5/15 Date: 11/5/15 Measurement Equation

Limit value 200 mg.m³ Reference oxygen 21.0 % by volume $c = \frac{m}{V} f_c$

inty as percentage 0.11 0.67 0.99 23.73		Requirement of states
0.67 0.99		<=1%
0.99		
		40/
23.73		<=1%
		<=1%
0.48	_	<=5%
0.71	0.32	<5% of limit value
2.00		<=2%
0		<=10%
	1	
$\rho_{\scriptscriptstyle m}$		
101.3		
1.59		
1.59		
10.00		
-	$\frac{\rho_{_{m}}}{101.3}$ 1.59	0.71 0.32 2.00 0

Uncertainty, Value	Units	Sensitivity coeff Uncert	ainty in Result	Uncertainty as %
V	0.773 m ³	116.30	1.43 mg.m ⁻³	1.59 %
m	73.60 mg	1.22	0.64 mg.m ⁻³	0.71
fc	1.00	0.00	0.00 mg.m ⁻³	0.00 %
L	1.04 mg.m ⁻³	1.00	1.04 mg.m ⁻³	
UCM	0.00 mg	1.22	0.00 mg.m ⁻³	
			1.88 mg.m ⁻³	
	V m fc L	V 0.773 m³ m 73.60 mg fc 1.00 L 1.04 mg.m⁻³	V 0.773 m³ 116.30 m 73.60 mg 1.22 fc 1.00 0.00 L 1.04 mg.m⁻³ 1.00	V 0.773 m³ 116.30 1.43 mg.m³ m 73.60 mg 1.22 0.64 mg.m³ fc 1.00 0.00 0.00 mg.m³ L 1.04 mg.m³ 1.00 1.04 mg.m³ UCM 0.00 mg 1.22 0.00 mg.m³

Expanded uncertainty	expressed with a level of confidence of 95%	4.18 %
Expanded uncertainty	expressed with a level of confidence of 95%	3.76 mg.m ⁻³
Expanded uncertainty as per	centage of limit value	1.9 % of ELV

Uncertainty calculation for Gaseous Measurement - VOCs

Completed by	ME	11/5/15		Wood Burning Boiler	EM-02818
Checked by	DM	11/5/15		9/4/15	Alan Nuttal Ltd
Limit value	100	mg.m ⁻³ (corrected) CO	Gas	Propane CH3	
•			Full Scale	10	opm
Measured concentration	7.66	ppm dry	Cal gas conc	10	opm
Measured concentration	12.31	mg.m ⁻³ (273K, 101.3kPa) CO	Conversion	1.607142857	
•		_	Full Scale	16.07142857	ng.m ⁻³ (CO)
			Cal gae conc	15 91071/29	ma.m ⁻³ (CO)

23 61 0.1	seconds % full scale	180.000
	% full scale	
0.1	% full ccale	
	/// Tull Scale	0.200
0.1	% full scale	2.000
1.0	% of value	2.000
0.2	% full scale	2.000
0.2	% full scale	2.000
1.0	% of reading/10hPa	0.033
0.5	% of value/10hPa	0.750
2.0	% full scale/10K	0.300
	mg/m3	
	% by vol	
	% by vol	4.000
1.0	% full scale/10V	2%fs/10V
1.5	% of value	2% of value
2.0	% of value	
	0.2 0.2 1.0 0.5 2.0	0.2 % full scale 0.2 % full scale 1.0 % of reading/10hPa 0.5 % of value/10hPa 2.0 % full scale/10K mg/m3 % by vol 1.0 % full scale/10V 1.5 % of value

Measurement performance related to stationary conditions						
Performance characteristic		Uncertainty	ncertainty Value of uncertainty quantity			
Standard deviation of repeatability at zero		u_{r0}		for mean		use rep at span
Standard deviation of repeatability at span leve		U _{rs}		for mean		0.01
Lack of fit		U _{fit}				0.09
Drift		U _{0dr}				0.03
volume or pressure flow dependence		U _{spres}				0.00
atmopsheric pressure dependence		U _{apres}				0.01
ambient temperature dependence		U _{temp}				0.69
NH3 (20 mg/m3)		U _{interf}				0.00
CO2 (15%)						0.00
H2O (30%)						0.00
Dependence on voltage		U _{volt}				0.32
losses in the line (leak)	•	U _{leak}				0.11
Uncertainty of calibration gas	·	U _{calib}				0.14

Measurement uncertainty		Result	12.31	mg/m ³
Combined uncertainty			0.79	mg/m ³
Expanded uncertainty	k =	2	1.58	mg/m ³
Uncertainty corrected to std conds			1.71	mg.m-3 (corrected)
Expanded uncertainty	expressed w	ith a level of confidence of 95%	1.71	% ELV
Expanded uncertainty	expressed w	ith a level of confidence of 95%	1.71 mg.m ⁻³ at ELV	

Correction for reference conditions								
		O2, %	Moisture, %	Pressure, KPa	Temperature, K			
	ref	21.00		101.30	273.00			
	measured	21.00		101.30	296.50			
Factors		1.00	1.00	1.00	1.09			
Correction Factor		1.09						

Effect of drift
0.06 mg/m3
0.46 % value

	ranges min	max	value at calib	
flow	0.3	0.5	0.4	
pressure	101.30	101.5	101.3	
temp	283	289	283	
NH3 range	0	0	0	
CO2 range	0	0.5	0	
H2O range	0	0.5	0	
Instrument Voltage Rating			110	
Voltage	104.5	115.5	110	

Use largest negative or p	ositive ir	nterferent effect
0	0.00	
0	0.00	
0	0.00	
0	0.00	
Interference uncertainty		0.00

Uncertainty calculation for HCHO, DNPH Impingement Method

Spreadsheet completed by: Date:	ME 11/5/15	Checked by: Date:	DM 11/5/15	Measurement Equation
Limit value	5 mg.m ⁻³	Reference oxygen	21 % by volume	_ m _
Measured concentration	0.07 mg.m ⁻³			$c = \frac{1}{V} f_c$

Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertainty as percentage	Uncertainty at Iv	Requirement of sto
Sampled Volume	V _m	0.8098	uV_m	0.001	m°	(.12	<=2%
Sampled gas Temperature	T _m	302.4166667	uTm	2	k		.66	<=1%
Sampled gas Pressure	$\rho_{\rm m}$	101.3	$u\rho_m$	1	kPa		.99	<=1%
Sampled gas Humidity	H _m	3.96	uH _m	1	% by volume	25	<mark>.26</mark>	<=1%
Oxygen content	$O_{2,m}$	21	uO _{2,m}	0.1	% by volume	(.48	<=5%
Mass HCHO	m	49	um	3.55	ug	7	'.19 0.10	<5% of limit value
Note - Sampled gas humidity,	temperature an	d pressure are values at the gas mete	r					
Leak	L	2			%	2	.00	<=2%
Uncollected Mass	UCM	0			mg		0	<=10%
Impinger Weight	Iw	1.3			%		1.3	<=5%
Intermediate calculations								
Factor for std conds	fs	0.87						
uncertainty components	symbol	sensitivity coeff		u (in units of fs)				
	ρ_{m}	0.009		0.009				
	H_{m}	0.009		0.009		$f_{-} = \frac{(100 - H_m)}{273} \frac{\rho_m}{\rho_m}$		
	T_{m}	0.003		0.006		$T_s = 100 \qquad T_m \ 101.3$		
	ufs			0.014			.58	
Corrected volume	V	0.739	uV	0.011	m³	$V = V_m f_s$.51	
Factor for O2 correction	fc	1.00						
uncertainty components	symbol	sensitivity coeff		u		$f = 21 - O_{2,ref}$		
anceramy components	$O_{2,m}$			0.100		$f_c = \frac{21 - O_{2,ref}}{21 - O_{2,m}}$		
Factor for O2 Correction	ufc	1.00		0.100		- 2,m 1(.00	

Parameter	Uncertainty, Value	Units	Sensitivity coeff Un	certainty in Result	Uncertainty as %
Volume(standard conditions)	V	0.739 m ³	0.09	0.00 mg.m ⁻³	1.51 %
Mass HCHO	m	49.40 μg	1.00	0.00 mg.m ⁻³	7.19 %
Factor for O2 Correction	fc	1.00	0.00	0.00 mg.m ⁻³	0.00 %
Leak	L	0.00 mg.m ⁻³	1.00	0.00 mg.m ⁻³	
Uncollected mass	UCM	0.00 mg	1.00	0.00 mg.m ⁻³	
Impinger weight	1	0.00 mg.m ⁻³	1.00	0.00 mg.m ⁻³	
Combined uncertainty				0.00 mg.m ⁻³	

Expanded uncertainty	expressed with a level of confidence of 95%	14.94 %
Expanded uncertainty	expressed with a level of confidence of 95%	0.01 mg.m ⁻³

0.5017 mg/l (nominal 0.5 mg/l) 0.0125 mg/l 4.98 % 1 %

HCHO Analysis Uncertainty HCHO mean HCHO sd HCHO Uncertainty Volume Uncertainty Uncertainty of HCHO µg Calc 7.19 %